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Basic Steps to Using DAKOTA 

1. Define analysis goals; understand how DAKOTA helps 

and select a method to use 

2. Access DAKOTA and understand help resources 

3. Workflow: create an automated workflow so DAKOTA 

can communicate with your simulation (Advanced Topic) 

– Parameters to model, responses from model to DAKOTA 

– Typically requires scripting (Python, Perl, Shell, Matlab) or 

programming (C, C++, Java, Fortran) 

– Workflow usually crosscuts DAKOTA analysis types 

4. DAKOTA input file: Jaguar GUI or text editor to configure 

DAKOTA to exercise the workflow to meet your goals 

– Tailor variables, methods, responses to analysis goals 

5. Run DAKOTA: command-line; text input / output 



Possible Directions 

• See process of interfacing DAKOTA to a black-

box application through file system 

• See current state of DAKOTA library interface 

• Understand MPI vs. local parallelism 

• Understand modes of application parallelism (in 

queue, out of queue, serial, parallel apps) 

 

• From DAKOTA 101: 

– Matlab, Python interfacing 

– DAKOTA as a library 

– Basics of HPC at SNL 
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DAKOTA Execution & Info Flow 

DAKOTA Input File 

• Commands 

• Options 

• Parameter definitions 

• File names 

DAKOTA Output Files 

• Raw data (all x- and f-values) 

• Sensitivity info 

• Statistics on f-values 

• Optimality info 

CALORE thermal analysis 

ALEGRA shock physics 

SALINAS structural dynam 

Premo high speed flow 

          (your code here) 
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Application Stand-in: 

Rosenbrock “Banana” Function 

f(x1,x2) = 100*(x2-x1*x1)2 + (1-x1)2 

-2  x1  2 

-2  x2  2 

Minimum: f(x1,x2) = f(1,1) = 0.0 
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Demo:  

Rosenbrock as a “black box” 

• Locate example in 
Dakota/examples/script_interfaces/generic 

 

• Described in DAKOTA 5.2 User’s Manual 18.1 

 

• Explore top-down (DAKOTA down to application and back) 

 

• Since you’re familiar with  your application, may want to 

build from application up 



Interfacing to Your Simulation 

(Assuming Text-based I/O) 

1. Annotate your input file to create template 
 { stress }  { alpha1 } 

2. Create a representative DAKOTA params.in file in aprepro 

format (see User’s 11.6) and test:  
dprepro params.in analysis.in.template analysis.in 

3. Verify commands to run application with analysis.in 

4. Determine how to automatically extract results of interest 

(direct application to export, shell commands, python, perl, 
visual basic, etc.) to create results.out (see User’s 13.2) 

5. Assemble into a script, e.g., run_analysis.sh; test script with 

sample params.in: 
./run_analysis.sh params.in results.out 

6. Test with a simple DAKOTA input deck, e.g., parameter study 



Parallelism 

• See Application Parallelism slides shipped in 

Dakota/examples/parallelism 



Nested parallel models support large-scale applications and architectures. 

1. SMP/multiprocessor 

workstations: Asynchronous 

(external job allocation) 

2. Cluster of workstations: 

Message-passing 

(internal job allocation) 

3. Cluster of SMP’s: Hybrid 

(service/compute model) 

4. MPP: 

Internal MPI 

partitions 

(nested 

parallelism) 

Serial  

DAKOTA 

job1 &    job2 &    job3 &    job4 & 

master 
slave slave slave slave 

job1          job2          job3          job4 

master 
slave slave slave slave 

jobs &      jobs &      jobs &      jobs & 

Parallelism from a computing 

platform perspective 



1. Algorithmic coarse-grained parallelism: independent fn. 

Evaluations performed concurrently: 

• Gradient-based (e.g., finite difference gradients, speculative opt.) 

• Nongradient-based (e.g., GAs, PS, Monte Carlo) 

• Approximate methods (e.g., DACE) 

• Concurrent-method strategies (e.g., parallel B&B, island-model 

GAs, OUU) 

2. Algorithmic fine-grained parallelism: computing the internal 
linear algebra of an opt. algorithm in parallel (e.g., large-scale 
opt., SAND) 

3. Function evaluation coarse-grained parallelism: concurrent 
execution of separable simulations within a fn. eval. (e.g., 
multiple loading cases) 

4. Function evaluation fine-grained parallelism: parallelization of 
the solution steps within a single analysis code (e.g., SALINAS, 
MPSalsa) 

Parallelism from an 

algorithmic perspective 


